The magnitude of climate change during Earth’s deep past suggests that future temperatures may eventually rise far more than projected if society continues its pace of emitting greenhouse gases, a new analysis concludes. The study, by National Center for Atmospheric Research (NCAR) scientist Jeffrey Kiehl, will appear as a “Perspectives” piece in this week’s issue of the journal Science.
Building on recent research, the study examines the relationship between global temperatures and high levels of carbon dioxide in the atmosphere tens of millions of years ago. It warns that, if carbon dioxide emissions continue at their current rate through the end of this century, atmospheric concentrations of the greenhouse gas will reach levels that last existed about 30 million to 100 million years ago, when global temperatures averaged about 29 degrees Fahrenheit (16 degrees Celsius) above pre-industrial levels.
Kiehl said that global temperatures may gradually rise over the next several centuries or millennia in response to the carbon dioxide. Elevated levels of the greenhouse gas may remain in the atmosphere for tens of thousands of years, according to recent computer model studies of geochemical processes that the study cites.
The study also indicates that the planet’s climate system, over long periods of times, may be at least twice as sensitive to carbon dioxide than currently projected by computer models, which have generally focused on shorter-term warming trends. This is largely because even sophisticated computer models have not yet been able to incorporate critical processes, such as the loss of ice sheets, that take place over centuries or millennia and amplify the initial warming effects of carbon dioxide. . . .
Kiehl focused on a fundamental question: when was the last time Earth’s atmosphere contained as much carbon dioxide as it may by the end of this century?
If society continues on its current pace of increasing the burning of fossil fuels, atmospheric levels of carbon dioxide are expected to reach about 900 to 1,000 parts per million by the end of this century. That compares with current levels of about 390 parts per million, and pre-industrial levels of about 280 parts per million.See the further discussion in Climate Progress, which cites other alarming studies showing that "the paleoclimate data is considerably more worrisome than" the (much-criticzed) computer models.
Since carbon dioxide is a greenhouse gas that traps heat in Earth’s atmosphere, it is critical for regulating Earth’s climate. Without carbon dioxide, the planet would freeze over. But as atmospheric levels of the gas rise, which has happened at times in the geologic past, global temperatures increase dramatically and additional greenhouse gases, such as water vapor and methane, enter the atmosphere through processes related to evaporation and thawing. This leads to further heating.
Kiehl drew on recently published research that, by analyzing molecular structures in fossilized organic materials, showed that carbon dioxide levels likely reached 900 to 1,000 parts per million about 35 million years ago.
At that time, temperatures worldwide were substantially warmer than at present, especially in polar regions—even though the Sun’s energy output was slightly weaker. The high levels of carbon dioxide in the ancient atmosphere kept the tropics at about 9-18 degrees F (5-10 degrees C) above present-day temperatures. The polar regions were some 27-36 degrees F (15-20 degrees C) above present-day temperatures.
Kiehl applied mathematical formulas to calculate that Earth’s average annual temperature 30 to 40 million years ago was about 88 degrees F (31 degrees C)—substantially higher than the pre-industrial average temperature of about 59 degrees F (15 degrees C).
The study also found that carbon dioxide may have at least twice the effect on global temperatures than currently projected by computer models of global climate.
The world’s leading computer models generally project that a doubling of carbon dioxide in the atmosphere would have a heating impact in the range of 0.5 to 1.0 degree C watts per square meter. (The unit is a measure of the sensitivity of Earth’s climate to changes in greenhouse gases.) However, the published data show that the comparable impact of carbon dioxide 35 million years ago amounted to about 2 degrees C watts per square meter.
Computer models successfully capture the short-term effects of increasing carbon dioxide in the atmosphere. But the record from Earth's geologic past also encompasses longer-term effects, which accounts for the discrepancy in findings. The eventual melting of ice sheets, for example, leads to additional heating because exposed dark surfaces of land or water absorb more heat than ice sheets.
“This analysis shows that on longer time scales our planet may be much more sensitive to greenhouse gases than we thought,” Kiehl says.
Kiehl's conclusion in his Science article:
The above arguments weave together a number of threads in the discussion of climate that have appeared over the past few years. They rest on observations and geochemical modeling studies. Of course, uncertainties still exist in deduced CO2 and surface temperatures, but some basic conclusions can be drawn. Earth’s CO2 concentration is rapidly rising to a level not seen in ∼30 to 100 million years, and Earth’s climate was extremely warm at these levels of CO2. If the world reaches such concentrations of atmospheric CO2, positive feedback processes can amplify global warming beyond current modeling estimates. The human species and global ecosystems will be placed in a climate state never before experienced in their evolutionary history and at an unprecedented rate. Note that these conclusions arise from observations from Earth’s past and not specifically from climate models. Will we, as a species, listen to these messages from the past in order to avoid repeating history?
No comments:
Post a Comment