March 28, 2012

Solar Flares and Nuclear Armageddon

The following essay, shocking in its conclusions, details the vulnerability of the electrical grid to extreme geomagnetic disturbances [GMD] arising from solar storms and forecasts an apocalyptic result were such an event to occur. The author, Matthew Stein, argues that “the next natural, inevitable super solar storm and resultant extreme GMD” could produce 400 Chernobyls and “would end the industrialized world as we know it, creating almost incalculable suffering, death and environmental destruction on a scale not seen since the extinction of the dinosaurs some 65 million years ago.” A year ago, senior officials of the United States, United Kingdom, and Sweden told the annual meeting of the American Association for the Advancement of Science that an intense electromagnetic storm would cause, in the worst case, two trillion dollars of damages, so Stein’s warning is rather far in excess of official estimates! He also thinks that the problem is fixable with fairly limited expenditures—some $2 billion. Alas, such preventative steps have not been taken; until they are, Stein argues, the danger is acute.

The following extract, about a third of the original, focuses on the threat posed by geomagnetic disturbances, but Stein also discusses later in his piece the potential costs of an electromagnetic pulse (EMP) attack and the measures advisable in addressing both threats:  

In the past 152 years, Earth has been struck by roughly 100 solar storms, causing significant geomagnetic disturbances (GMD), two of which were powerful enough to rank as "extreme GMDs." If an extreme GMD of such magnitude were to occur today, in all likelihood, it would initiate a chain of events leading to catastrophic failures at the vast majority of our world's nuclear reactors, similar to but over 100 times worse than, the disasters at both Chernobyl and Fukushima. When massive solar flares launch a huge mass of highly charged plasma (a coronal mass ejection, or CME) directly toward Earth, colliding with our planet's outer atmosphere and magnetosphere, the result is a significant geomagnetic disturbance.

The last extreme GMD of a magnitude that could collapse much of the US grid was in May of 1921, long before the advent of modern electronics, widespread electric power grids, and nuclear power plants. We are, mostly, blissfully unaware of this threat and unprepared for its consequences. The good news is that relatively affordable equipment and processes could be installed to protect critical components in the electric power grid and its nuclear reactors, thereby averting this "end-of-the-world-as-we-know-it" scenario. The bad news is that even though panels of scientists and engineers have studied the problem, and the bipartisan Congressional electromagnetic pulse (EMP) commission has presented a list of specific recommendations to Congress, our leaders have yet to approve and implement any significant preventative measures. . . .

If an extreme GMD were to cause widespread grid collapse (which it most certainly will), in as little as one or two hours after each nuclear reactor facility's backup generators either fail to start, or run out of fuel, the reactor cores will start to melt down. After a few days without electricity to run the cooling system pumps, the water bath covering the spent fuel rods stored in "spent-fuel ponds" will boil away, allowing the stored fuel rods to melt down and burn. Since the Nuclear Regulatory Commission (NRC) currently mandates that only one week's supply of backup generator fuel needs to be stored at each reactor site, it is likely that, after we witness the spectacular nighttime celestial light show from the next extreme GMD, we will have about one week in which to prepare ourselves for Armageddon. . . .

During the great geomagnetic storm of May 14-15, 1921, brilliant aurora displays were reported in the Northern Hemisphere as far south as Mexico and Puerto Rico, and in the Southern Hemisphere as far north as Samoa. This extreme GMD produced ground currents roughly ten times as strong as the 1989 Quebec incident. Just 62 years earlier, the great granddaddy of recorded GMDs, referred to as "the Carrington Event," raged from August 28 to September 4, 1859. This extreme GMD induced currents so powerful that telegraph lines, towers and stations caught on fire at a number of locations around the world. Best estimates are that the Carrington Event was approximately 50 percent stronger than the 1921 storm. Since we are headed into an active solar period much like the one preceding the Carrington Event, scientists are concerned that conditions could be ripe for the next extreme GMD.

Prior to the advent of the microchip and modern extra-high-voltage (EHV) transformers (key grid components that were first introduced in the late 1960s), most electrical systems were relatively robust and resistant to the effects of GMDs. Given that a simple electrostatic spark can fry a microchip and thousands of miles of power lines could act like giant antennas for capturing massive amounts of GMD-spawned electromagnetic energy, modern electrical systems are far more vulnerable than their predecessors.

The federal government recently sponsored a detailed scientific study to better understand how much critical components of our national electrical power grid might be affected by either a naturally occurring GMD or a man-made EMP. Under the auspices of the EMP Commission and the Federal Emergency Management Agency (FEMA), and reviewed in depth by the Oak Ridge National Laboratory and the National Academy of Sciences, Metatech Corporation undertook extensive modeling and analysis of the potential effects of extreme geomagnetic storms on the US electrical power grid. Based upon a storm as intense as the 1921 storm, Metatech estimated that within the United States, induced voltage and current spikes, combined with harmonic anomalies, would severely damage or destroy over 350 EHV power transformers critical to the functioning of the US grid and possibly impact well over 2000 EHV transformers worldwide.

EHV transformers are made to order and custom-designed for each installation, each weighing as much as 300 tons and costing well over $1 million. Given that there is currently a three-year waiting list for a single EHV transformer (due to recent demand from China and India, lead times grew from one to three years), and that the total global manufacturing capacity is roughly 100 EHV transformers per year when the world's manufacturing centers are functioning properly, you can begin to grasp the implications of widespread transformer losses.

The loss of thousands of EHV transformers worldwide would cause a catastrophic grid collapse across much of the industrialized world. It will take years, at best, for the industrialized world to put itself back together after such an event, especially considering the fact that most of the manufacturing centers that make this equipment will also be grappling with widespread grid failure. . . .

The Congressionally mandated EMP Commission has studied the threat of both EMP and extreme GMD events and made recommendations to the US Congress to implement protective devices and procedures to ensure the survival of the grid and other critical infrastructures in either event. John Kappenman, author of the Metatech study, estimates that it would cost about $1 billion to build special protective devices into the US grid to protect its EHV transformers from EMP or extreme GMD damage and to build stores of critical replacement parts should some of these items be damaged or destroyed. Kappenman estimates that it would cost significantly less than $1 billion to store at least a year's worth of diesel fuel for backup generators at each US nuclear facility and to store sets of critical spare parts, such as backup generators, inside EMP-hardened steel containers to be available for quick change-out in the event that any of these items were damaged by an EMP or GMD. . . .

* * *

In the comments section, Stein notes that "numerous top notch scientific experts" are in accord with his outlook:
For example, in his letter to the Nuclear Regulatory Commission on 8/5/2011, Dr. William Graham, former chief science adviser to President Reagan, and chairman of the bipartisan Congressional EMP Commission, discussed the problem of long-term widespread grid failure due to extreme geomagnetic storm, saying "A Study by the National Academy of Sciences independently confirmed the EMP Commission's assessment that, if a great geomagnetic storm like the 1859 Carrington Event recurred today, recovery of the national electric power grid would take 4 to 10 years. Such an event could also cause operators of the 108 nuclear power plants in the United States to lose the ability to perform a safe, controlled shutdown of their power reactors, producing Fukushima-like disaster on a large scale."

Matthew Stein, “400 Chernobyls: Solar Flares, Electromagnetic Pulses and Nuclear Armageddon,”, March 24, 2012

No comments: